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STRESS STATE OF A STRAIGHT ISOLATED CUT, LOADED FROM wITHOUT 

BY CONCENTRATED FORCES AND GROWING AT A CONSTANT RATE 

E. N. Sher UDC 539.375 

In [i] an investigation was made of the stress state of a straight isolated cut, de- 
veloping at a constant rate under the conditions of antiplane deformation of the ideal theory 
of elasticity. Here, we consider cases of total self-similar loading and non-self-similar 
loading by concentrated forces, applied at the middle of the cut to its edges and depending 
arbitrarily on the time. 

In the present work an analogous investigation is made within the framework of the 
ideal theory of elasticity for the case of plane deformation; here, use was made of results 
and ideas published in [2, 3]. 

In the unloaded elastic xy plane, at the initial moment of time t = O, let a cut loaded 
by forces concentrated along its edges start to develop along the x axis from the origin of 
coordinates with the rate v. It is required to determine the stress state arising in the 
plane, specifically, the value of the coefficient of the field intensity of the stresses 
near the tip of the cut. The elastic displacements, as is well known [4], satisfy the fol- 
lowing equations: 

I 02ui I 02vi 

w i - - u i - ] -  v i, Au i ==~"~ Or2 ' ~v i b 2 0 t  2 ' 

Ou 1 Oug Ov 1 Ove 

Oy Ox' Ox Oy ' 

(O.l) 

where ui(x , y, t), vi(x, y, t) are the potential and solenoidal components of the displace- 
ment vector w i (x, y, t); a and b are the velocities of the longidinal and transverse waves 
of the elastic plane. 

The components of the stress tensors are expressed in terms of the displacements by 
the formulas 

(0.2) 

We consider the region of the upper half plane y > 0, bounded by the arc of the longi- 
tudinal wave, emitted at the initial moment of time (Fig. I). In this region a solution of 
system (0.i) is sought, satisfying the following boundary conditions. At the edge of the 
cut, with Ixl < vt, the external load is given: Oyy =-Oy (x, t); axy = 0. The form of 
the function Oy (x, t) will be refined in what follows. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. i, pp. 154-163, January-February, 1980. Original article submitted January 25, 1979. 

144 0021-8944/80/2101-0144507.50 �9 1980 Plenum Publishing Corporation 



Fig. i 

In the sections of the x axis from the tip of the cut to the longitudinal wave vt < 
]x~] �9 < at~ y = 0, satisfaction of the conditions is required: Wa = O, Oxy = 0, flowing out 
of the assumed symmetry of the problem with respect to the y = 0 axis. The initial conditions 
of the problem are null conditions. A solution is sought, having radical singularities for 
the stresses at the tips of the cut, near which along the x axis the component of the stress 
tensor Oyy has the form 

2nN(t)  
~vv (z, O, t) I~:~vt ~ "W2n ( x -  vt) ' (0.3) 

where N(t) is the sought coefficient of the stress intensity. 

i. Self-Similar Stress. We consider the case of stress with which the external load 
has the form 

a v = ate_------- ~ a , (i.i) 

where Q(ato, to) are the constants of dimensionality of the pressure and the time, I is a 
whole positive number. In this case, the functions 

Ui = 8Zu~/Ot ~, Vi = Ozv~/Ot z 

are homogeneous zero-order functions with respect to the variables x, y, t. Under these 
circumstances~ U i satisfy the wave equation for longitudinal waves, V i for transverse waves. 
In accordance with [4], they can be represented as the real parts of analytical functions 
in the complex planes zx and zat 

Ur (x/at,  v/at) = l i e  U[ (zl), Vi  (x/at ,  v/at) = Re V[ (z,) ,  

where zx and z2 are connected with the variables x, y, t by the relationships 

~,--t--z,x--y]/'a -2-z~=' O, 8 2 = t - - z 2 x - - y ] / / b - ~ - - z ~ = O .  (1.2) 

Specifically, with y = 0, zl = za = t/x. The branches of the radicals in planes with cuts, 

connecting (a -z, --a-~), (b-~,-b -~) arechosen that, with z § ~, they tend toward i ~zi-~2. 

We introduce the analytical function W(z), connected with the sought functions in the 
following ways 

w (z) = u] + r] (z). 

The last two relationships of system (0.I) and the condition Oxy 
fied if it is assumed that [3] 

w" 
b-a V'~=-~ _ ~ b-" 

b - ' - 2 z 2  ' �9 

= 0 with y = 0 can be satis- 

(1.3) 
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Here, at the y = 0 axis (0.2) 

o~ ~ b-~ V ~  

S ( z )  = (b -2 - -  2z*) ~ + 4z  2 g a  -2 z ~ g b - " - - z  2. 

(1.4) 

In the z plane we state the boundary-value problem for the function W'. At the edges 
of the cut with IxI < vt, y = 0, which, in accordance with (1.2), in the z ~lane corre- 
sponds to the interval IRe z I > v -I, Im z = 0, the condition is satisfied 

I m  W'~ - -  tb-2 ]1/z ~ - -  a -2  0za~ ( 1 . 5 )  
- -  ~zS (z) O t  I " 

With b -I < IRezl < v -~, Im z = 0, which, in the physical xy plane corresponds to the sec- 
tions from the tips of the cut to the transverse wave, we have w~(x, 0, t) = 0 and, conse- 
quently, Re W(z) = 0. From this, Re W' = 0. From the condition of the equality to zero of 

Z 

the vertical displacements at the y = 0 axis in a longitudinal wave with bt < Ix I < at, and 
the inequalities flowing out of the null zero conditions 

R e U [ ( z ) =  0 with 1 R e z ] < a  -1 ,  I m z =  0, 

R e V [ ( z ) - - 0  with laezl<b -~, h n z = O  

it follows that, with IRe z I < b -[, Im z = 0, the condition Re W=' = 0 is also satisfied. 

Thus, in the lower half plane z we have a mixed Keldysn--Sedov problem for the function 
W~. We shall seek its solution in the upper half plane of the z3 = i/az plane. 

From requirement (0.3) with respect to the behavior of the stresses at the tips of the 
cuts it follows that, with z3 = -+ v/a, z = + v -z W~ ~ (zs-v2/a2)-(l+~/2). As in [i], at 
the intersection points of the x, y axes of the physical plane with the longitudinal and 
transverse waves, as well as at the origin of coordinates, the condition of regularity of 
function W(z) must be satisfied 

W ,-" a o + ol  (z.3 • b a )  + . . . .  W "  ~ a 1 with z 3 - +  4. b / a ,  

W ~ a~ + a~ (z~ • 1) + . . . .  W~ ,-~a~ with z 3 - +  • t ,  

W ~ .  i (a iz  -#- ~3z 3 @ . . . ) ,  W ~  .-~ ia I with z 3--+ :~ oo, 

W - ,  ~o § ~ _ 2 9  + . . . .  W" N z~ with z3 -+  O. 

The last two conditions take account of the symmetry of the problem with respect to 
the x -- 0 axis in the physical plane, postulated in what follows. 

The function W~, having these properties and satisfying the boundary conditions at the 
Im zs = 0 axis, has the form 

w" = ~ + oz3 ~ jAiz3  
( 4  - ,:-J~ § ~''~ * ' -~za (~ - %) i=o J 

Im W'here is defined in (1.5). The solution obtained contains I constants Ai, whose values 
can be obtained, e,g., from the system of equations 

~  (,jr - - o ,  o ,  t)  = - 

6 t  r 
~ ( v t ,  O, t ) ,  r = 0 . . . . .  l - -  1. 
ot r ( 1 . 7 )  

Here Oyy must be expressed in terms of solution (1.6) using (1.4); Oy is given in (1.3). 
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In what follows we will examine in more detail the partial case of loading (1.3), i.e., 
the case of a load concentrated at the origin of coordinates 

~y = QtZ81 (x)/t~o, (i. 8 )  

where Q, to are the constants of the dimensionality of the force for unit length and time. 
In this case 

where x3 = x/at. 

~z% _ Q~!~ (~) _ / (~) 
Otl t~at at ' 

From (1.5) we obtain 

I m  "[;V: - -  

D (%) = a4x~S (l/ax~) = 

~tb 2D (xs) 

[2 -- "a . . . .  ~-x ~'1~ ] / /  ~ 2 t /o) 31 - -4  t - -x~Vt- - (a /b)  ~xa. 

Substituting the expression obtained for Im Wl into (1.6), we obtain 

= iCz 2t 1 , 1)la21[Q 
w; c :  (i .9) 

Integrating (1.4) with respect to t, with y = Owe obtain 

(~rffyy xl--l--r i 
at~ - - ~ ( / - - i - r ) l  Re ( z - - s / - 1 - ~ f l ( s ) d s ,  r = 0  . . . . .  l - - l ,  

a--1 

s (~) w '  z A (s)  - 

(1.io) 

Substituting these expressions into (1.7), taking account of (1.8) and (1.9), for determina- 
tion of the constants A i in (1.9) we obtain the system 

v - - l + o  

a--1 

/--1 

_ s~Z-lC3 (s) 1 + -~ A, .~is I" 

After identical transformations, this system is brought to the following: 

[--1 

~.~ AiBji  -~ Bjl = O, ] = 0  . . . .  , l - - i ,  

~-~+o 
f zSt-2i-~-3~ (z) dz 

B j i  = B e  . V ~ - I (~-~- ~2),+~/~ ' Bjz = B j &  =_i, 
1 

S(z) =(a~/b  ~ - 2 z 2 )  ~ + 4 z  2 t r l - z  ~ V~a~/b ~ - z  2. 

(i.ii) 

Here the notation is introduced: ~ = v/a, Ai = Ai a2(i+l)- The integration path with 
numerical calculations in integrals (i.ii) was selected going around the point v-* along the 
arc of a circle with its center at this point. 

The expression for the coefficient of the stress intensity (0.3) can be found, using 
(1.9), from (i.I0) with r = I -- I. 
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Here we obtain 

N ( t )  = N O ( t)  R ( v ,  l ) ,  N O ( t )  - -  2nQt t  
t o ~ v t  

(__ t)[~)2lT,2 (5--1) t _~_ ?2 Z "Ai '~21 

R (~,  0 = ,--o , 
2' 0 - ~*/b ~) V i  - ~' 

n n] 
= I - -  C~1-1 /3  -~  C ~ - 1 / 5  - - . . .  ( - -  ~ ) | -1 / (2~  - -  t ) ,  Cra = rft! (n - -  r e ) I*  

(1 .12)  

The value of N~ is equal to the value of the coefficient of the stress intensity, arising 
in the static problem of the loading of a motionless cut with a length of 2vt by the load 
Oy = Q(t/to)16,(x). To find R(9, 1), in (1.12) the following procedure was used. For the 
selected values of v and l, the coefficients of the matrix of the system (I.Ii) were calcu- 
lated. Its solution determined the constants Ai and the value of R(9, 1). 

Thus, the values of R(v, l) were found for l = 0,..., 9, v/b = 0.i, 0.2,...,0.8 with 
b/a = 0.6. These values are given in Table I. 

For I = O, th e function R(~, 0) was calculated using the formula [3] 

;,~ (;-1) (1 .13)  
B (~ ,  0 )  = 2 V t - 7, 2 l i  - ( . lb)~ l  ' 

which is obtained also from the general solution of (1o9), if, in it, it is assumed that 
I =0, A i = 0. 

In the case I = i, to find the one unknown constant, we have one linear equation, 
whose coefficients can be found analytically in terms of elliptical integrals 

R (~, 0 = ;'11~ (?-') 
" 2 

I1  = n e  V~--~-- ~ V ~ - '  - >  = --s 
1 

+ ( a m ' .  4v~')F (q) -r 4 (m ~ -- 2) E (q') + m2F (q')], 
7,-1+o 

I ~  = Re ,( s (=) ~'' ~ - 1  { [m~ + ~ 2  (1 - -  m~')] F (q)  - -  
1 V z ~ - 1 (~-~" - :2)~/,  = 1 - ?~ 

- -  [(2 - -  ,~)~ + 4 0 - -  v~)] E (q) + 8 (1 - -  ~ )  E (q') - -  4 , ~  0 - -  ~") F (q')],  

q -= " l / l  -v z, q '  = V t  - -  m 2, ra = v /b ,  

(1.14) 

F(q), E(q) are total elliptical integrals of the first and second kinds, respectively. 

The results of calculations, carried out using this formula, coincided with those 
obtained using the above method, to the required degree of exactness. 

An interesting special characteristic of the problem under consideration in comparison 
with its antiplane variant is the fact that, for some interval of rates of propagation of 
the cut greater than the critical v*, the function R(~, l) takes on a negative value. Here 
the value of the velocity v*, with which the function R(~, l) goes over into the negative 
region, decreases with a rise in I. Table 2 gives the value of the velocity v*/b for 1 
Z~9, b/a = 0.6. 

2~ Non-Self-Similar Concentrated Loading. The case of loading with which Oy = o(t) • 
6,(x) with an arbitrary function a(t) is of great practical importance. It can be-approxi- 
mately considered [5] using self-similar solutions of Sec. I if we represent the function 
a(t) in the form of a segment of the series 
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TABLE 2 

g(t) = ~ ait ~ 
i=O ( 2 . 1 )  

in the interval 0 < t < T. 

In this case, for the coefficient of the stress intensity we obtain the expression 

N ( t ) =  t y_~a~R(v ,  O t i .  ( 2 . 2 )  
V ~  i = o  

The coefficients ai for o(t)~ L2 can be found, e.g., from the representation of o(t) in the 
interval (0, T) in the form of an expansion in terms of Legendre polynomials. 

The above procedure was carried through for two laws of change in the load 

~ ( t )  = 6o(t) 6o(1 - -  t), 0 < t < T, 

02(0  = 6o(t)6o(t - -  t) s in  ~t ,  0 < t < T. 

H e r e  do(t) is a Heaviside function. An investigation of the effect of r on the degree of 
approach of series (2ol) to the exact value of function o(t) and on the convergence of N(t) 
with respect to r (2.2) showed that a change in r from 5 to 9 brings about only a slight 
change in the value of g(t) and N(t), calculated using formulas (2.1) and (2.2). It was 
also remarked that the adopted polynomial representation well approximates a continuous law, 
while, at the same time, for a discontinuity in the region, there are considerable deviations. 

Figures 2 and 3 show the dependences N(t) for the first loading law with v/b = 0.2, 
0.4. The dashed and dash-xlot lines in Figs~ 2 and 3 correspond to values T = 2.4. The calcu- 
lations were made with r = 9. The solid lines correspond to dependences N(t), obtained for 
the above case from a solution [2] of the problem of the stress state of a plane with an 
arbitrarily growing isolated cut, loaded by an arbitrarily varying load. In the general 
case, this solution is contained in the expression for the coefficient of stress intensity 
as the mlnimum of triple integrals, but, in the case of the law under Consideration ov(x , t) 
= ~o(t)~o(l -- t)~x(x), this solution is simplified and can be represented in the for~ 

No,  0 <  t <  t o = (1 - -  via) - t ,  

N ( t )  = ! No + m[2,  t o <  t < t 1 = ( t  - -  rib)  - I ,  

[ N o _ m ( f o _ i ~ )  ' t , < t < t ~ _ = ( t _ v / c ) _ t  ( 2 . 3 )  

No - -  m[o,  t~. < t < t 3 = t~ (1 + via). 

Here  

C (-- a/c) 
No = n o)lV- , ro = 11 = 

1 rv  ( h -  t) 
a(t- i ) l ( r t )  

t j" ( G ( - - s ) ) l l s - - 1  <Is 

1~ = 2zt V ~ - ~  tFa (t - t)l(vt) - s (ale - -  s) ' 
1 

m = " l / i  (1 - -  v/c) a -~ ( -  a/v) G ( - -  s) = exp ~ (g) 
V ~ I / i  - vl<~ ' , ' 

1 

(2.4) 
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! 
i 
I 

z!  
J 

V - (p (~) = a r c t g  
(2~ 2 ~ a2/bZ) z 

a/b 

{(7 ( - -  s)} = cos  ((p (s))  e x p  (•  (s)) ,  • (s) = v . p .  ~- - ~ - -  s ' 

1 

c is the rate of propagation of Rayleigh waves (with b/a = 0.6, c/a = 0.5485). The values 
of to, tl, t2correspond tothe momentsof timeof thearrival of the signals of longitudinal, 
transverse, and Rayleigh waves, emitted with t = i at the center of the cut, at the end of 
the cut. The value of ts corresponds to the moment of time of the arrival at one end of the 
cut of the signal of a longitudinal wave, emitted with t = i at the center of the cut and re- 
flected from its other end. 

The introduction of t3 means that solution (2.3) is valid when there is no effect of 
one end of the cut on the other end. 

A comparison of curves in Figs. 2 and 3 shows that the approximate solution of the 
polynomial approximation (2.2) does not reproduce the behavior of N(t) in the neighborhood 
of ta, i.e., the time of arrival at the end of the cut of a Rayleigh wave emitted at the 
center of the cut at the moment when the action of the load ceases (t = i), the remaining 
time qualitatively and, with 0 < t < t, quantitatively, coincides with the exact value. 

Figures 4-6 show dependences N(t), found using (2.2) for the law a(t) = a0(t)~o(l- 
t)sin ~t, 0 < t < T with r = 9 and values of T = i, 2, 4 (curve i, and the dashed and 
dash--dot curves, respectively) for v/b = 0.2, 0.4, 0.6. 

N(t) is frequently evaluated using the static approximation N ~ = a(t)/~, whereN ~ 
for the moment of time t is the value of the coefficient of the stress intensity in the static 
problem of an isolated cut of length 2vt, loaded at the center by forces with a value of 
o( t ) .  

This approximation is shown by curves 2 in Figs. 4-6. It can be seen that, even with 
v = 0.4 or greater, the difference between the dynamic solution and the static approxima- 
tion is great, and the time of the positive phase of the functions N(t) and N~ differs 
particularly strongly. 

In [i], for the case of antiplane deformation, thata good approximation of the dynamic 
problem for a growing isolated cut with large values of the rate of its development is a 
solution of the problem for a semifininite cut, which, at the initial moment of time, draws 
away from the origin of coordinates, and then develops at a constant rate v. 

In this case the edges of the cut are loaded by forces concentrated at the origin of 
coordinates, varying with the time in accordance with the same law a(t) as in the problem 
for an isolated cut. 
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The applicability of such an approximation is obviously explained by the weakening, 
with a rise in v, of the effect of one end of the crack on the other. 

In a c c o r d a n c e  with [2], the expression of the coefficient of the stress intensity for 
the problem of a growing semiinfinite cut, loaded in the above manner, can be represented 
in the form 

l ~ ( t )  = m ( I o  - -  I~ - -  I , ) 1 l l / ~ ,  Io = o [ t  - -  l ( t ) lb] ,  
I(1)la 

Ia=G(--a/c)V ale -- IV(l /c  -- i/b) l (t) ~ o' i t -- l (t)/c -- x (a/b--a/c)] d~ 
0 

a/b i (t)/a 

i ,  - -  ]/~ ; [ a ' l t  - -  sZ ( t ) / a  - -  z (a /b  - -  s)] {O (-- s)} r 1 ]/a/-T-C~-- s d z d s ,  
= " l / i  (~lc ~) 

(2.5) 

(2.5) 

where (t) is the path traversed by the tip of the cut after the start of its motion. In 
the case of a %miform development of the cut, l(t) = vt. The remaining notation in (2.5) 
is the same as in (2.4). 

Calculations using formula (2.5) for o(t) = 6o(t)6o(i -- t)sin ~t and Z(t) = vt are 
shown in Figs~ 4-6 by curves 3. There is good agreement between the dependences N(t) and 
N*(t) with v~0.4. 

The author wishes to express his thanks to L. V. Kuzina for her extensive part in the 
calculational part of the work. 
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